下面是文案网小编分享的航模知识作文 航模入门基础知识文案,以供大家学习参考。
航模知识作文 航模入门基础知识文案:
航空模型基础知识教程(二)
第一节
活动方式和辅导要点
航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。
制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和
劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训练。
放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅
导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。
比赛可以把活动推向高潮,优胜者受到鼓舞,信心十足:失利者或得到教训,或不服输也
会憋足劲头。是引导学生总结经验,激发创造性和不断进取精神的好形式。参加大型比赛将使他们得到极大的锻炼而终生不忘。
第二节
飞行调整的基础知识
飞行调整是飞行原理的应用。没有起码的飞行原理知识,就很难调好飞好模型。辅导员要
引导学生学习航空知识,并根据其接受能力、结合制作和放飞的需要介绍有关基础知识。同时也要防止把航模活动变成专门的理论课。
一、升力和阻力
飞机和模型
飞机之所以能飞起来,是因为机翼的升力克服了重力。机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加大(伯努利定律)。这是造成机翼上下压力差的原因。
造成机翼上下流速变化的原因有两个:
a、不对称的翼型;
b、机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。
升力的大小主要取决于四个因素:
a、升力与机翼面积成正比;
b、升力和飞机速度的平方成正比。同样条件下,飞行速度越快升力越大;
c、升力与翼型有关,通常不对称翼型机翼的升力较大;
d、升力与迎角有关,小迎角时升力(系数)随迎角直线增长,到一定界限后迎角增大升力反而急速减小,这个分界叫临界迎角。
机翼和水平尾翼除产生升力外也产生阻力,其他部件一般只产生阻力。
二、平飞
水平匀速直线飞行叫平飞。平飞是最基本的飞行姿态。维持平飞的条件是:升力等于重力,拉力等于阻力。由于升力、阻力都和飞行速度有关,一架原来平飞中的模型如果增大了马力,拉力就会大于阻力使飞行速度加快。飞行速度加快后,升力随之增大,升力大于重力模型将逐渐爬升。为了使模型在较大马力和飞行速度下仍保持平飞,就必须相应减小迎角。反之,为了使模型在较小马力和速度条件下维持平飞,就必须相应的加大迎角。所以操纵(调整)模型到平飞状态,实质上是发动机马力和飞行迎角的正确匹配。
三、爬升
前面提到模型平飞时如加大马力就转为爬升的情况。爬升轨迹与水平面形成的夹角叫爬升角。一定马力在一定爬升角条件下可能达到新的力平衡,模型进入稳定爬升状态(速度和爬角都保持不变)。稳定爬升的具体条件是:拉力等于阻力加重力向后的分力(F=X
十Gsinθ);升力等于重力的另一分力(Y=GCosθ)。爬升时一部分重力由拉力负担,所以需要较大的拉力,升力的负担反而减少了。
和平飞相似,为了保持一定爬升角条件下的稳定爬升,也需要马力和迎角的恰当匹配。打破了这种匹配将不能保持稳定爬升。例如马力增大将引起速度增大,升力增大,使爬升角增大。如马力太大,将使爬升角不断增大,模型沿弧形轨迹爬升,这就是常见的拉翻现象。
四、滑翔
滑翔是没有动力的飞行。滑翔时,模型的阻力由重力的分力平衡,所以滑翔只能沿斜线向下飞行。滑翔轨迹与水平面的夹角叫滑翔角。稳定滑翔(滑翔角、滑翔速度均保持不变)的条件是:阻力等于重力的向前分力(X=GSinθ);升力等于重力的另一分力(Y=GCosθ)。
滑翔角是滑翔性能的重要方面。滑翔角越小,在同一高度的滑翔距离越远。滑翔距离
(L)与下降高度(h)的比值叫滑翔比(k),滑翔比等于滑翔角的余切滑翔比,等于模型升力与阻力之比(升阻比)。Ctgθ=1\/h=k。
滑翔速度是滑翔性能的另一个重要方面。模型升力系数越大,滑翔速度越小;模型
翼载荷越大,滑翔速度越大。调整某一架模型飞机时,主要用升降调整片和重心前后移动来改变机翼迎角以达到改变滑翔状态的目的。
五、力矩平衡和调整手段
调整模型
不但要注意力的平衡,同时还要注意力矩的平衡。力矩是力的转动作用。模型飞
机在空中的转动中心是自身的重心,所以重力对模型不产生转动力矩。其它的力只要不通重心,就对重心产生力矩。为了便于对模型转动进行分析,把绕重心的转动分解为绕三根假想轴的转动,这三根轴互相垂直并交于重心。贯穿模型前后的叫纵轴,绕纵轴的转动就是模型
的滚转;贯穿模型上下的叫立轴,绕立轴的转动是模型的方向偏转;贯穿模型左右的叫横轴,绕横轴的转动是模型的俯仰。
对于调整模型来说,主要涉及四种力矩;这就是机翼的升力力矩,水平尾翼的升力力矩;
发动机的拉力力矩;动力系统的反作用力矩。
机翼升力力矩与俯仰平衡有关。决定机翼升力矩的主要因素有重心纵向位置、机翼安装角、机翼面积。水平尾翼升力力矩也是俯仰力矩,它的大小取决于尾力臂、水平尾翼安装角和面积。拉力线如果不通过重心就会形成俯仰力矩或方向力矩,拉力力矩的大小决定于拉力和拉力线偏离重心距离的大小。发动机反作用力矩是横侧(滚转)力矩,它的方向和螺旋桨旋转方向相反,它的大小与动力和螺旋桨质量有关。
俯仰力矩平衡决定机翼的迎角:增大抬头力矩或减小低头力矩将增大迎角;反之将减小迎角。所以俯仰力矩平衡的调整最为重要。一般用升降调整片、调整机翼或水平尾翼安装角、改变拉力上下倾角、前后移动重心未实现。方向力矩平衡主要用方向调整片和拉力左右倾角来调整。横侧力矩平衡主要用副翼来调整。
第三节
检查校正和手掷试飞
一、检查校正
一架模型飞机制作装配完毕后都应进行检查和必要的校正。检查的内容是模型的几何尺寸和重心位置。检查的方法一般为目测,为更精确起见,有些项目也可以进行一些简单的测量。
目测法是从三视图的三个方向观察模型的几何尺寸是否准确。正视方向主要看机翼两边上反角是否相等;机翼有无扭曲;尾翼是否偏斜或扭曲。侧视方向主要看机翼和水平尾翼的安装角和它们的安装角差;拉力线上下倾角。俯视方向主要看垂直尾翼有无偏斜;拉力线左右倾角情况;机翼、水平尾翼是否偏斜。
小模型一般用支点法检查重心,选一点支撑模型,当模型平稳时,该支点就是重心的位置。
检查中如发现重大误差,应在试飞前纠正。如误差较小,可以暂不纠正,但应心中有数,
在试飞中进一步观察。
二、手掷试飞
手掷试飞的目的是观察和调整滑翔性能。方法是右手执机身(模型重心部位),高举过头,模型保持平正,机头向前正对风向下倾10度左右,沿机身方向以适当的速度将模型直线掷出,模型进入独立滑翔飞行状态。手掷方法要多次练习,要注意纠正各种不正确的方法,比较普遍的毛病有:
模型左右倾斜或机头上仰;出手不是从后向前的直线,而是绕臂根划弧线;出手方向不是沿机身向前,而是向上抛掷;出手速度太大或太小。出手后如模型直线小角度平稳滑翔属正常飞行,稍有转弯也属正常状态。遇有下列不正常的飞行姿态,就应进行调整,使模型达到正常的滑翔状态。
1、波状飞行:滑翔轨迹起伏如波浪。一般称之为“头轻”即重心太靠后。这种说法虽正确但不够全面。实际上一切抬头力矩过大或低头力矩过小造成的迎角过大都会造成波状飞行。调整的方法有:
a、推杆(升降调整片下扳);
b、重心前移(机头配重);
c、减小机翼安装角;
d、加大水平尾翼安装角(作用同推杆)。
2、俯冲:模型大角度下冲。一般叫“头重”,这种说法也不够全面。一切抬头力矩过小,低头力矩过大造成的迎角过小都会造成模型俯冲。调整的方法有:
a、拉杆(升降调整片上翘);
b、重心后移(减少机头配重);
c、加大机翼安装角;
d、减小水平尾翼安装角(作用同拉杆)。
3、急转下冲:模型向左(或向右)急转弯下冲。原因是方向力矩不平衡或横侧力矩不平衡。具体原因多为机翼扭曲造成的左右升力不等或垂直尾翼纵向偏转形成的方向偏转力矩。机身左右弯曲的后果与垂直尾偏转相同,也可能造成急转下冲。调整的方法有:
a、向转弯反向扳方向调整片(蹬舵);
b、修正机翼扭曲(相当于压杆操纵副翼)。
飞机或高级模型飞机的操纵其原理和调整模型相同,都是改变力矩平衡状态。初级模型一般没有这些舵面,只好用改变这些空气动力面形态的方法来达到调整的目的,方法有三种:
a、加温定形:把需要调整的部位用手扳到一定角度同时加温(哈气、吹热风、烘烤等
),停留一定时间使之变形。这种方法适用于纸、吹塑纸、木片部件。一般扳动角度越犬,温度越高,保持时间越长调整变形越多。
b、收缩变形:在需要调整的翼面的一面刷适当浓度的透布油,这一面将随透布油固化而收
缩使翼面交形。
c、型架定形。将翼面按调整要求在型架上固定达到改变形态的目的。一般配合使用加温或
刷涂料。这种方法适用于构架式的翼面的调整。
第四节
手掷直线距离科目
一、三种飞行方式
本科目是在限定宽度条件下比赛往返手掷飞行距离。
决定成绩的因素有三个:
a、投掷技术;
b、模型的滑翔性能;
c、模型的直线飞行性能。飞行方式有以下三种:
1、自然滑翔直线飞行:出手速度和模型的滑翔速度相同,出手后模型沿滑翔轨迹直线滑翔,飞行距离取决于出手高度和滑翔比,一般在6一10米之间。
2、水平前冲直线飞行:出手速度稍大于模型的滑翔速度,出手后模型
先水平直线前冲一段距离后过渡到自然滑翔。这种方式比自然滑翔距离可能提高
2一5米。
3、爬升前冲直线飞行:以更大的速度出手并且可以有小的出手角。出手后模型沿小角度直线爬升,然后转入滑翔。这种方式可能比自然滑翔距离提高5一10米以上。
第一种方式成绩较低,但容易掌握,成功率高。后两种方式飞行距离远,但放飞、调整技
术难度大、成功率较低。因为
(a)方向偏差和飞行距离成正比,增大飞行距离后模型飞出边线机率增加(飞出边线后成绩无效);
(b)前冲特别是爬升前冲容易使模型失速下冲或改变航向飞出边线。因此,为了取得好的成绩,就需要了解更多的飞行调整知识,提高体能,熟练地应用投掷技巧。
二、模型的调整
1、滑翔性能。滑翔性能是飞出较大直线距离的基础。调整时应注意两个问题。一个是最大限度的减小阻力,模型表面要保持光滑,零部件采用流线形(也括配重),前后缘打磨为圆形,翼面平整不要扭曲等,减小阻力可以增大升阻比,即可以增大滑翔比。
第二点是调整到有利迎角。迎角由升降调整片来控制。不同迎角模型
的升阻比不同,有利迎角升阻比最大,同一高度的滑翔距离最远。正常滑翔后,还需微调升降调整片,找到一个最佳舵位。
2、模型的配重。许多人有一种印象,似乎模型越重越飞不远。其实不然。模型
的滑翔比和重量无关。另一方面,重量小模型的动能就小,克服阻力的能力就小,手掷距离反而小。轻飘飘的稻草扔不远也是这个道理。所以,手掷直线距离项目的模型
,在规则允许的范围内,应适当增大重量,以加大模型的动能。
3、机翼的刚性。手掷模型的初速较大,机翼承受弯曲力矩大,容易变形甚至颤振而影响飞行性能。为此,制作时要小心操作,不让翼面出现折痕。如刚性仍不足,就要适当加强。方法是在翼根和机身接合处抹胶水,也可在翼根部单面域双面贴加强务(如胶带纸)。
4、直线飞行的调整
a、理想的直线飞行是模型既没有方向不平衡力矩又没有横侧不平衡力矩,即垂直尾翼没有
偏角(方向调整片中立位置),左右机翼完全对称(没有副翼作用)。这种情况不但阻力最小,而且能适应速度的变化。
b、实际上模型一般总是转弯的,原因不外乎机翼不对称
(多数情况是机翼扭曲),产生了滚传力矩,或是垂直尾翼有偏角产生了方向力矩。遇到这种情况最好查明原因“对症下药”,以达到接近理想的直线飞行。我们把这种调整方法叫做“直接调整法”。
c、还有一种调整方法,例如由于机翼扭曲产生向左滚转的力矩,模型向左倾斜,升力向左的分力使模型左转弯。这种情况不直接纠正机翼的扭曲,而是给一点右舵,也可以使模型
直飞。这种调整方法叫“间接调整法”。间接调整虽然也能实现直线飞行,但这种直线飞行是有缺陷的:一是增大了阻力,降低了滑翔性能;二是难于适应速度的变化,不少模型前一段基本上能保持直线,后一段转弯偏航,其原因多半是间接调整造成的。因此,应尽量采用“直接调整法”,避免“间接调整法”。
5、克服前冲失速的方法
前面提到前冲和前冲爬升可以大幅度提高飞行成绩,但同时又存在失速下冲和失速转向的危险。因此克服前冲失速是提高成绩的关键。
克服前冲失速的措施是提高俯仰安定性。具体做法是适当配重前移重心,同时相应加大机翼,水平尾翼的安装角差,以保持俯仰平衡。这样当模型前冲抬头机翼逐渐接近失速时,水平尾翼因按装角小尚未失速,水平尾翼仍有足够的低头力矩使模型转入滑翔。
克服前冲失速的另一个办法是用较小的迎角飞行。事实证明,迎角越大越容易失速下冲,
迎角越小越不容易进入失速下冲。
失速转弯是机翼扭曲造成的,机翼扭曲时,必有一侧安装角交大(另一侧变小),接近失速时这一半机翼先失速,并使模型倾斜转弯。前面提到的间接调整的缺陷尤其表现在这种情况,所以机翼的扭曲必须彻底纠正。
三、投掷技巧
模型调好之后,决定飞行成绩完全取决于投掷技巧了。好的技巧能充分发挥模型的飞行性
能,甚至可以弥补模型的某些缺陷。所以,并不是一投了事,要反复练习掌握要领:
1、助跑、投掷的动作要协调,使模型保持平稳,忌抖动和划圆弧。
2、恰当的出手速度。出手速度不是固定不变的,不同的调整状况,不同的飞行方式,不
同的风速风向要求有不同的出手速度。争取做到随心所欲,准确无误。
3、恰当的出手角度。一般自然滑翔方式出手应有一个很小的负角;水平前冲方式的出手角
一般为零度(水平);爬升前冲方应有一个适当的正角(仰角)。
4、出手点和出手方向:如果模型是完全直线飞行的,在无风情况下,运动员应在起飞线的中点向正前方出手,这样成功率最高。但事实上转弯的模型占绝大多数,侧风放飞的情况也
占大多数。聪明的运动员善于利用出手点和出手方向的变化来修正由于侧风和模型转变引起的偏差。
例如右转弯模型如果在起飞线正中放飞就可能从右方飞出边线,如果又碰上左侧风,情况就更严重。假如换一个方法——出手点选在起飞线左侧,出手方向有意识左偏。这样前半段模型可能在空中飞出左边线,而后半段可能绕回来在场内着陆,使成绩有效。
5、风与投掷时机:风对飞行的影响有不利的一面,另外也有有利的方面。例如顺风能增大
飞行距离;逆风则减小飞行距离,侧风有时加剧偏航,有时又减小偏航。风一般是阵性的,风速和风向在不断变化。要善于捕捉最佳出手时机。例如顺风时最好大风瞬间出手,逆风时在弱风瞬间出手。
第五节
单翼滑翔机
飞行原理:1、螺旋桨推动空气,使空气推动机身向前飞
2、依靠风力对机翼的作用,将飞机托起来
飞行效果:1、高度大于2层楼高
2、远度大于20米
3、缓缓滑翔降落
结构:机身、机翼、尾翼、螺旋桨、橡皮筋、翼台
安装步骤:
步骤一:用定型片固定在机翼上,使机翼形状稳定
步骤二:将机翼安装在翼台上(注意要一次粘贴上,并且要对齐中分线)
步骤三:安装尾翼
步骤四:安装挂钩及橡皮筋
步骤五:粘贴加强胶带
试飞:
操作方法:1、顺时针旋转螺旋桨100圈
2、飞行前左手抓住螺旋桨,右手托住机身,使机身保持斜向上
3、先放左手,待螺旋桨旋转时,右手轻轻斜向上抛出飞机
4、飞行高度和距离若不够,对飞机进行检查
第六节(公开课可用)
直升机
飞行原理:螺旋桨推动空气,使得空气托起直升机飞起来(作用力与反作用力理论)
飞行效果:高度大于4层楼高,可进行竖直上飞和斜向上飞
直升机结构:螺旋桨、机身、橡皮筋、木杆、挂钩
安装步骤:
步骤一:安装螺旋桨
步骤二:安装机身;学习如何寻找物体的重心线
步骤三:安装挂钩
步骤四:安装橡皮筋;学会系橡皮筋及如何绕圈
步骤五:检查
试飞:
操作方法:1、顺时针旋转螺旋桨(解释什么是顺时针)
2、旋转大约100圈
3、试飞前在左手抓住螺旋桨,右手托住木杆底部
4、放手时,左手先放,待螺旋桨旋转起来时,右手轻轻放开(切勿向上推)
5、飞行高度若不够,检查橡皮筋光滑度和圈数
6、若直升机飞行时机身斜倒,请调整机身的粘贴处
7、完成制作
航模知识作文 航模入门基础知识文案:
资料针对无线电遥控类固定翼飞机
2014.06.18
注:
航模入门知识虽然在贴吧、论坛都有,但比较散乱,在此将相关知识和经验整合,以方便爱好者学习使用。文档由成都市各高校航模协会共同编写修订,部分专业知识源自网络。由于知识和经验有限,难免有误或不足,若发现问题欢迎指出。成都市高校航模交流群:157769127
第一部分航模运动的基本介绍2
一、航模及航模运动2
二、国内航模运动发展2
三、航空模型竞赛3
第二部分航空模型(固定翼)类别3
一、练习机3
二、滑翔机3
三、特技机4
四、像真机4
第三部分航模的常用设备(电动)4
一、电机4
二、电调5
三、舵机5
四、遥控器5
五、电池6
六、螺旋桨6
七、电子设备的选择和搭配7
第四部分航空模型结构与原理7
一、航模的组成及术语7
二、航模的飞行原理8
第五部分航模的调试与飞行9
一、航模的调试9
二、航模的飞行10
三、飞行操作注意事项11
第六部分航模飞行注意事项12
第一部分航模运动的基本介绍一、航模及航模运动航空模型是各种模型航空器的总称,多为遥控器控制的模型飞机,也有线操纵、自由飞等非遥控类,操作航模飞行也称为航空模型运动。航模飞行和操作原理与真飞机相同,因此操控比较困难。超市里售卖的遥控飞机操作较为简单,属于玩具类别。较专业的遥控模型,在各方面都是相对复杂的,可控制升降舵、方向舵、副翼和引擎等。初学者通常需要一段时间才能熟悉如何组装、调试和操控航模,并了解如何使用相关设备。
在国际航联的竞赛规定中:航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器。
航空模型运动作为一项正式体育运动项目,和其他运动有诸多相似之处。例如都有一些特有的操作技巧,都需要不断的练习以达到更高水平。它的生命力还在于其知识性和趣味性。参加这项活动还可以学到许多科技知识,培养善于动手动脑和克服困难的优秀品质,促进德、智、体全面发展;同时通过飞行技术的提高来体验飞行带来的乐趣,实现翱翔蓝天的愿望。
二、国内航模运动发展航空模型的竞赛科目有:留空时间、飞行速度、飞行距离、特技、“空战”等。世界锦标赛设有30个项目,隔一年举行一次。航空模型还设有专门记录各项绝对成绩的纪录项目。
我国航空模型运动起步于四十年代,1947年举行首届全国比赛。新中国成立后,于五十年代建立了组织指导机构,培养了一批技术骨干,群众性的航空模型运动得到蓬勃发展,运动水平迅速提高。1978年10月,我国加入了国际航空联合会(),1979年开始步入世界赛场。我国航模运动起步晚,新中国成立后曾大力发展和普及航模运动,但伴随一些国情变化,我国航模运动发展相对落后不少,在近几年发展相对较快。
初学者学习航模知识可在各大论坛学习或与模友直接交流。务必先了解自己的喜好,从基础的机型开始。很多人一开始被吸引是因为看到爱好者的各类漂亮的机型或做出令人惊讶的动作,殊不知操作这些模型的爱好者都是有长期的经验做后盾,而尤其是飞机操作难度,往往在实际体验过后才能体会到。
国内较知名的航模论坛有:5、5、3g等,内有相关设备使用板块、各类飞行器技术交流板块等;也有相关的贴吧、以及分布各地的俱乐部或协会等,都比较适合学习以及技术交流。
3、航空模型竞赛航空模型列入世界锦标赛的有12个项目,按惯例分别举行世界自由飞行(3项)、线操纵圆周飞行(4项)、无线电遥控特技、无线电遥控模型滑翔机、象真模型(2项)和室内模型等6个锦标赛。各锦标赛每两年举行1次。此外,还有欧洲锦标赛和各国公开赛。世界锦标赛和重大国际比赛通常采用每项由3名(或3组)运动员参加单项团体和个人比赛的办法,对获得前3名的选手给予奖励。
第二部分航空模型(固定翼)类别按飞机的外形以及操作难度,大致可分为练习机、滑翔机、特技机、像真机等。它们各有其明显的速度、操控以及外形区别,也有共同之处,并不完全相互独立。
1、练习机顾名思义,练习机是适合练习的飞机,它的主要特点有速度相对较慢、较稳定,操控更容易。
航模里面目前常用的练习机有飘飘机、微风、塞斯纳等。也有很多模友自制带翼型的上单翼机,其优点是成本低,制作相对简单。通过制作这些模型,可对航模的基本结构和设备有所了解。下面对这三个机型分别做介绍。
飘飘机:淘宝上常见的叫做好小子,该机采用上单翼,平凸机翼,背推(即发动机在飞机背部),以及常规的副翼、升降舵和方向舵,优点是飞行稳定,安全,不易损坏电机和螺旋桨,也相对不易对人造成严重伤害。
微风:微风多为爱好者制作的材料飞机,其发动机位于机头,称为“前拉”。前拉机特别要注意的是,为了抵消反扭力矩和抬头力矩,一般电机需要有一定的右拉和下拉角。其他特性和飘飘机类似。
塞斯纳:塞斯纳是著名的教练机真机的模型,也是像真机。相对前两架飞机,速度稍快,操作更灵活,还有外观好看的优点。
2、滑翔机滑翔机的最大特点就是滑翔性能好。具有飞行稳定,操作容易,速度较慢等特性。滑翔机有有动力与无动力两种,常见的滑翔机有冲浪者、无动力滑翔机等。
飞的较多的有冲浪者:采用背推动力,没有起落架。与其他飞机不同的是,此飞机需要手抛起飞。由于速度较慢、稳定、飞行时间长,常用作(第一视角)和航拍等。
3、特技机航模固定翼特技机按比赛类别主要有遥控特技飞行、花式飞行,F3A是遥控特技飞行在国际航联规定中的比赛代码,但也常被作为该比赛机型的非正式称呼;3D则为各类花式特技表演用机。它们机型多种多样,有真机的模型(像真机),也有室内超轻的3D等。特技机的主要特点是灵活,其舵面面积非常大,推重比也很大。下面作一个具体的介绍。
遥控特技比赛机型:非常明显的流线型,非常灵活,后三点起落架,几乎就是为了比赛而设计,该比赛有非常多的规定动作,也有不少国内国际赛事。
花式特技机:舵面很大,非常灵活。此外飞机的推重比很大,以便能做出各种失速动作。花式飞行的特点在于形式多样,无特殊规定,其飞行技术和创新动作在不断突破。
室内3D机:和花式飞行类似,不过很轻,一般是板材机身,材料多为、板材,甚至直接框架上蒙皮。此类飞机适合室内等小场地飞行,姿态优美,但由于极差的抗风性能,不适合外场飞行。
4、像真机像真机的特点即是像真,以真机为原型设计而来。它们往往在外形、涂装及其他细节上尽量模仿真飞机,因此飞机比较细致、好看。但是像真机的操作难度一般很大,对飞行场地要求也更高。操作者需大量的基础飞行经验并慢慢适应,才能熟悉不同飞机的特性。
第三部分航模的常用设备(电动)电动航模的常用设备有电机、电调、舵机、遥控器、电池、螺旋桨等。
1、电机电机主要分为有刷电机和无刷电机两种,有刷电机就是有电刷的电机,无刷电机则没有电刷。有刷电机目前飞机模型上不常使用,故不多做详细介绍。无刷电机相比有刷电机而言,效率更高,功率更大,低转速时扭力特性更好。是目前电动航模的大多数选择。
无刷电机分为内转子和外转子,内转子就壳不动,轴转;外转子就是轴跟壳一起转(底座固定)。内转子电机在尺寸和转速上有一定优势,外转子电机在扭力,散热等方面占据优势。电动机型号的命名是有规则的,根据型号名称可以大致判断是否是自己需要的。电机型号四位数字中的前2位代表直径,后2位代表长度。各厂家的命名方式有所不同,常见多数品牌的电机型号,如2212,指的是电机内部的线圈组部件的直径22,长度12,而有些厂家则会把这一型号标注为2830电机,因为是电机外壳尺寸28,长度30,而其实这2个是差不多型号的电机。电机还有一个重要参数:值。值表示电机在“空载”情况下,电子调速器“每提升1v”输出电压时,电机转速的提高量。例如在某电机值为1400,那么在10V电压下空载转速理论上为140010=14000,但实际值一般不会达到,尤其是在真机装螺旋桨的情况下。与电机型号一样,值也是选择电机的重要标准之一。
不同飞机需要不同型号电机,以及电机合适的值,并与合理的螺旋桨搭配,才能在保护电子设备安全工作的前提下,有最合适的动力输出。
2、电调电调的全称是电子调速器,常用内置的电调可连接电机和电池、舵机,调节电机的供电同时给接收机输电;也有专门给电机供电的,接收机、舵机等需外置供电。电调的主要标识是电流,例如:30A,表示长期工作能承受的最大电流为30A,短时间(如10秒)能承受的电流可超过此值;此外还有所支持的电池,例如标识为“24s”,则表明该电调支持锂电池2-4节串联的电池组。
3、舵机舵机是一个根据遥控信号来决定摇臂偏转角度的器件,通过摇臂上连接的钢丝来改变飞行控制翼面的偏转角度,来完成飞行姿态的调整。
舵机的参见参数是重量,如9g,17g等,不同重量级的扭力等不同,适用于不同要求的飞机。舵机的选择在于其扭矩及响应速度,根据不同飞机要求搭配,以达到合适的操控效果。此外舵机分为模拟、数字、金属等,数字信号的舵机相比模拟的会更迅速和精准,金属舵机的齿轮组为金属,不容易损坏。金属和数字的价格相对更贵。
4、遥控器遥控器是遥控模型飞机必不可缺的,也是非常重要的。目前遥控器多都为2.4的,不同遥控器的功能不同,易用性可能也不同。如摇杆是否带轴承、是否带显示屏、是否具有双向传输等。
选择遥控器很重要的一个标准就是通道数。比如某遥控器是几通道,一般根据遥控器型号就能确定通道数。通道可以理解为功能数量,多一个通道可以多更多的功能,添加更多的控制单元在飞机上。此外还需注意的是,遥控器分为左手油门和右手油门,也常称为“美国手”、“日本手”,即油门控制通道在左手或右手,可根据自己的喜好选择。
遥控器的品牌和型号可根据自己的需求和承受能力选择,同等功能的遥控器,好的品牌易用性、稳定性等会更出色。常见国内品牌为天地飞,华科尔,国外著名的有、等。常用的低价稳定遥控器如天地飞6A,性价比较高的有天地飞七、华科尔D10,更高价位则可选择进口的等。
5、电池模型动力电池的命名规则:以3s1p220030c为例,3s代表电池组是由3组电池串联成,1p表示每组电池只有一片(在只有1p的情况下,往往省略不标),2200代表电池的容量。其实是h的概念,即电流时间,2200是以2200(毫安)的电流持续放电1h(小时)的电量。30c表示锂电池的放电倍率能力。对于2200的电池来说,1c就是2200,也就是说此电池最多能够以30倍率即220030=6600066a的电流持续放电。但是请注意一点,使用越高的放电倍率,电池的使用时间就越短,如果始终使用30c倍率放电,那电池只能够坚持:60分钟\/30倍=2分钟。
电池的品牌也很重要,好的品牌有足够的放电倍率,能提供足够大的输出功率,同时也不易出现问题,使用寿命相对较长。
值得重视的是,在动力电池使用中,很多不良的使用方式和习惯,都会引起电池寿命减少,甚至引发事故。如充电过程中,必须有人在场,不可留下不管;电池尽量不要过放,容易引起电池发胀并减少寿命;若充满电的电池未及时放电,应使用充电器或其他方式放电至每片3.8V左右,长时间满电存放也易导致电池损坏。
6、螺旋桨螺旋桨负责把引擎的功率转变为向前的拉(推)力,重要性不言而喻。值得注意的一点是,我们应该把桨叶看成一片小型的机翼,引擎转动的速度加上飞机前进的速度,使桨叶对空气产生相对的速度,桨叶的截面本来就是一个翼型,然后因伯努利定律产生升力,只是此时的升力是向前的,称为拉(推)力,使飞机向前。
螺旋桨上一般有一组数字,例如8x6,8代表这支螺旋桨直径是8英寸,6代表螺距是6英寸,螺距的意思是螺旋桨旋转一圈,依螺旋桨的角度,理论上螺旋桨前进的距离。
不同电机、不同值、不同电压所适配的螺旋桨会不一样,因此螺旋桨需根据实际使用环境来选择。
螺旋桨也有不同材质和品牌,如塑料的、木质的、碳纤维的等,价格也不尽相同。
七、电子设备的选择和搭配遥控器品牌和型号根据自己的需求选择之外,还须注意电子设备的选择和搭配。
首先是电机的选择。不同飞机对动力要求不同,在实际使用电压下,根据电机的参数表格选择合适拉力的电机(一般正规厂家电机都能找到电压、螺旋桨、力、电流、力效等参数表格)。同型号电机存在几个值,可根据飞机速度要求、螺旋桨大小限制以及电流限制来选择合适值的电机。一般来说,高速飞机选择高值的电机,低值电机则适合相对低速的飞机。涵道机由于其高转速对动平衡的要求颇高,一般不自己单独选择电机,而是直接选择成套的电机和涵道风扇。
电调的选择。根据电机参数表格,我们可以看到需要的电机的厂家测试电流,那么选择的电调最大电流应比此值略大。常见电调有6A、8A、10A、12A、20A、30A、40A、60A、80A、100A、120A等。
根据电机的参数表格还可以确定需要的螺旋桨型号等,电池的容量则根据飞机的续航或重量要求来选择。普通飞机常用9g舵机,大飞机或3D机等对舵机力度要求较高,应根据需求选择力更大、质量更好的舵机。
电机和桨的参考搭配:
1000(大概值,下同)——10寸(多见于四轴、3D机)
1250——9寸(多见于四轴、3D机)
1400——8寸(多见于一般前拉机如塞斯纳微风等、也可用于后推纸飞机)
1700——7寸(较少见,拉力、速度均适中)
2200——6寸\/5寸(多见于高速板飞机)
2600——5寸(多见于高速板飞机、好小子、冲浪者)
相同型号的电机在相同工作环境下,值越低效率越高,最大电流就越低,也越省电。螺旋桨的另一个参数是螺距,螺距大的适合高速,而较小则适合低速。此外,螺旋桨叶越少,效率就越高,所以常用的螺旋桨多为两叶,而多叶的涵道则非常耗电。
第四部分航空模型结构与原理一、航模的组成及术语模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横向安定。
2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制设备、燃料等。
4、起落架——供模型飞机起飞、着陆和停放的装置。前面一个起落架,后面两个起落架的叫前三点式;前面两个起落架,后面一个起落架叫后三点式。
5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、电动机、活塞式发动机、喷气式发动机等。
航空模型技术常用术语:
1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。展弦比越大说明机翼越狭长。
二、航模的飞行原理要调试好飞机或飞好飞机,都需要了解一定的飞行原理。
飞机和模型飞机之所以能飞起来,是因为机翼的升力克服了重力。机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加大(伯努利定律)。这是造成机翼上下压力差的原因。
造成机翼上下流速变化的原因有两个:a、不对称的翼型;b、机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。
升力的大小主要取决于四个因素:a、升力与机翼面积成正比;b、升力和飞机速度的平方成正比。同样条件下,飞行速度越快升力越大;c、升力与翼型有关,通常不对称翼型机翼的升力较大;d、升力与迎角有关,小迎角时升力(系数)随迎角直线增长,到一定界限后迎角增大升力反而急速减小,这个分界叫临界迎角。
机翼和水平尾翼除产生升力外也产生阻力,其他部件一般只产生阻力。
第五部分航模的调试与飞行1、航模的调试1、检查校正
一架模型飞机制作装配完毕后都应进行检查和必要的校正。检查的内容是模型的几何尺寸和重心位置。检查的方法一般为目测,为更精确起见,有些项目也可以进行一些简单的测量。
目测法是从三视图的三个方向观察模型的几何尺寸是否准确。正视方向主要看机翼两边上反角是否相等;机翼有无扭曲;尾翼是否偏斜或扭曲。侧视方向主要看机翼和水平尾翼的安装角和它们的安装角差;拉力线上下倾角。俯视方向主要看垂直尾翼有无偏斜;拉力线左右倾角情况;机翼、水平尾翼是否偏斜;各舵面工作是否正常等。
小模型一般用支点法检查重心,选一点支撑模型,当模型平稳时,该支点就是重心的位置。
检查中如发现重大误差,应在试飞前纠正。如误差较小,可以暂不纠正,但应心中有数,在试飞中进一步观察。
2、力矩平衡和调整
调整模型不但要注意力的平衡,同时还要注意力矩的平衡。力矩是力的转动作用。模型飞机在空中的转动中心是自身的重心,所以重力对模型不产生转动力矩。其它的力只要不通重心,就对重心产生力矩。为了便于对模型转动进行分析,把绕重心的转动分解为绕三根假想轴的转动,这三根轴互相垂直并交于重心。贯穿模型前后的叫纵轴,绕纵轴的转动就是模型的滚转;贯穿模型上下的叫立轴,绕立轴的转动是模型的方向偏转;贯穿模型左右的叫横轴,绕横轴的转动是模型的俯仰。
对于调整模型来说,主要涉及四种力矩;这就是机翼的升力力矩,水平尾翼的升力力矩;发动机的拉力力矩;动力系统的反作用力矩。
机翼升力力矩与俯仰平衡有关。决定机翼升力矩的主要因素有重心纵向位置、机翼安装角、机翼面积。
水平尾翼升力力矩也是俯仰力矩,它的大小取决于尾力臂、水平尾翼安装角和面积。
拉力线如果不通过重心就会形成俯仰力矩或方向力矩,拉力力矩的大小决定于拉力和拉力线偏离重心距离的大小。发动机反作用力矩是横侧(滚转)力矩,它的方向和螺旋桨旋转方向相反,它的大小与动力和螺旋桨质量有关。
俯仰力矩平衡决定机翼的迎角:增大抬头力矩或减小低头力矩将增大迎角;反之将减小迎角。所以俯仰力矩平衡的调整最为重要。一般用升降调整片、调整机翼或水平尾翼安装角、改变拉力上下倾角、前后移动重心未实现。
方向力矩平衡主要用方向调整片和拉力左右倾角来调整。横侧力矩平衡主要用副翼来调整。
二、航模的飞行1、平飞
水平匀速直线飞行叫平飞。平飞是一种基本的飞行姿态。维持平飞的条件是:升力等于重力,拉力等于阻力。
由于升力、阻力都和飞行速度有关,一架原来平飞中的模型如果增加动力,拉力就会大于阻力,使飞行速度加快。飞行速度加快后,升力随之增大,升力大于重力模型将逐渐爬升。为了使模型在较大动力和飞行速度下仍保持平飞,就必须相应减小迎角。反之,为了使模型在较小动力和速度条件下维持平飞,就必须相应的加大迎角。所以操纵(调整)模型到平飞状态,实质上是发动机动力和飞行迎角的正确匹配。
2、爬升
前面提到模型平飞时如加大动力就转为爬升的情况。爬升轨迹与水平面形成的夹角叫爬升角。一定动力在一定爬升角条件下可能达到新的力平衡,模型进入稳定爬升状态(速度和爬角都保持不变)。稳定爬升的具体条件是:拉力等于阻力加重力向后的分力(十θ);升力等于重力的另一分力(θ)。爬升时一部分重力由拉力负担,所以需要较大的拉力,升力的负担反而减少了。
和平飞相似,为了保持一定爬升角条件下的稳定爬升,也需要动力和迎角的恰当匹配,打破了这种匹配将不能保持稳定爬升。例如动力增大将引起速度增大,升力增大,使爬升角增大。如动力太大,将使爬升角不断增大,模型沿弧形轨迹爬升,这就是常见的拉翻现象。
3、滑翔
滑翔是没有动力的飞行。滑翔时,模型的阻力由重力的分力平衡,所以滑翔只能沿斜线向下飞行。滑翔轨迹与水平面的夹角叫滑翔角。
稳定滑翔(滑翔角、滑翔速度均保持不变)的条件是:阻力等于重力的向前分力(θ);升力等于重力的另一分力(θ)。
滑翔角是滑翔性能的重要方面。滑翔角越小,在同一高度的滑翔距离越远。滑翔距离(L)与下降高度(h)的比值叫滑翔比(k),滑翔比等于滑翔角的余切滑翔比,等于模型升力与阻力之比(升阻比)。θ=1。
滑翔速度是滑翔性能的另一个重要方面。模型升力系数越大,滑翔速度越小;模型翼载荷越大,滑翔速度越大。
调整某一架模型飞机时,主要用升降调整片和重心前后移动来改变机翼迎角以达到改变滑翔状态的目的。
航模知识作文 航模入门基础知识文案:
航模制作教案
项目介绍
航模制作属于手、脑并用的综合性劳动教育技术。本项目所使用的材料是木条、木板和木片,其比例是依据飞机的比例缩小而制作的。以其知识性、实践性、趣味性深受参训学生的喜爱。
学情分析
本活动主要针对初一、初二学生。处于这个年龄段的学生正值喜欢探索事物,勇于挑战,愿意动手,他们同时也具备了一定的知识能力,但缺少展现自我和动手制作的机会。另外,随着人类航天事业的发展,越来越多的学生开始感兴趣于航天事业,针对学生这些特点,我们开设这项活动。
活动目标
⑴简要介绍飞机发展史和认真分析飞机基本构造。
⑵通过测量分析图形增强学生的识图能力,在动手操作中锻炼其动手能力,通过放飞,培养学生发现问题和解决问题的能力。
⑶激发兴趣,培养合作精神。
活动方式
教、学相互交流探讨,学生分组合作。
活动重点、难点
重点:机翼的打磨及固定位置
难点:机翼打磨的程度
活动材料、工具
木条、木板、木片、锯、铅笔、锉、钢尺、砂纸、美工刀、101胶水。
材料工具图
活动过程组织设计
情境导入→了解原理→动手制作→放飞→总结
一、情境导入
教师讲解飞机发明人(莱特兄弟)的小故事,然后请学生谈谈感想?
教师思考:利用古人发明飞机的故事,激发学生在当前情况下,想要创作
的激情,培养他们的挑战精神,使他们在目标驱动下更好的进行学习。
二、了解原理
教师引导学生观察鸟飞行图,请学生分析其结构特征。然后再引导学生观察航模示意图,并分析其机构,两者对比分析,更明确飞机的基本组成部分:机身、机翼、尾翼(包括水平尾翼和垂直尾翼)。
鸟空中飞行图
翘翼航模示意图
总结各部分的作用:
机身:固定连接机翼、尾翼和起到承载作用
机翼:为飞行提供动力
尾翼:控制飞机飞行方向和保持飞机飞行平衡
三、航模制作
⒈针对上边的展示图,请同学们熟悉材料与各部分的关系。然后请同学们观察黑板上的示意图,最后请同学试着描述各个部分操作步骤(具体到尺寸)。
航模各部分尺寸展示图
教师与学生共同总结航模制作步骤:
测量——切割——打磨——组装
针对这一步骤,在动手制作前可以按照这个步骤把每个部分制作好,然后组装。
机身:截取一根长30CM的木条,作为飞机的长机身,截取一根长15CM的木条作为短机身,然后用101胶把两机身一段对齐了固定在一起,最后为减少阻力需要把对齐的一端磨成鸟嘴的形状。
鸟嘴图机身图
机翼:按照所要求的尺寸截取五边形机翼后,再进行打磨。根据飞行原理,用锉和砂纸将机翼打磨成一个前、后两侧稍薄一些的流线型样式。
机翼流线型示意图
五边形机翼示意图
在打磨完成后做翘翼飞机模型时,机翼要向上折起一个角度,两侧机翼与水平的角度在15°-25°之间。具体做法:用锯在机翼中心线上锯木板厚度的一半,然后向上折起,并在“V”字型机翼底部用锉或砂纸稍作打磨,目的是利于跟机身的固定,最后,将机翼固定在距离飞机前端8.5CM的机身上,并且注意机翼的对称。
鸟的翅膀图“V“
机翼示意图“V”
思索:鸟飞行时,两个翅膀不停的做“V”形运动,我们做的飞机是翘翼的原理是一致的,这里就又追溯的飞机发明主要的原理是根据鸟的飞行原理得来的。
尾翼:按要求尺寸从木偏上截取五边形水平尾翼和直角梯形的垂直尾翼。先把水平尾翼和垂直尾翼组装成一个完整的尾翼,再把尾翼组装到机身的尾翼部位。
教师思索:学生操作过程中,每个环节都要求准确、精细,教师应予以指导纠正。
飞机模型的组装是重点,主要措施:
端正:俯瞰飞机,应以机身为轴,机翼、水平尾翼左右对称。
平行:俯瞰,机翼后缘与水平尾翼后缘平行,正看,机翼千元与水平尾翼前缘平行。
垂直:垂直尾翼与水平尾翼垂直,机翼、水平尾翼与机身垂直。
机翼的打磨是重点,主要措施:
首先让学生明白机翼需要打磨的目的;其次,根据物理学知识,机翼上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间内走过的路程比流过下表面的空气的路程相对远,因此机翼上表面的空气相对速度比下表面的空气相对速度快。
小资料:
帕奴利定理:“流体对周围的物质产生的压力与流体的相对速度成反比。”因此上表面的空气施加给机翼的压力就小于下表面的压力。这样上下两个合力必然向上,就产生了升力。
⒉分组合作操作
教师强调每三个人一组,保证既有分工又有合作,每个人都是必不可少部分。另外强调安全,每个学生既要注意自身安全也要注意他人安全。
教师思索:理论的东西是易忘的,实践才是真理。这个环节,就是让学生理解和体验飞机的奥秘的。这样既能突出重点,又能突破难点。在制作过程中,培养学生的合作意思、实践意识和安全意识。
四、户外放飞
放飞之前,把工具收拾好,然后由教师带到放飞场,指导学生放飞。
小资料
放飞要领:
放飞站姿:两脚左右并列,微微分开,两膝略弯,身体向右转过一些。
手执模型的部位:拇指和食指、中指一起捏住机翼下方机身的重心部位,手腕、手臂自然放松。
模型的前端略微抬高,模型飞机向右倾斜,模型高度比自己的肩膀略高一些。
模型起飞时,要正对风向略偏左,这样有利于模型飞机的起飞和爬升。
教师:让大家的飞机安全飞翔吧!对于飞行中出现的问题要自己想办法解决,最后进行一次比赛。户外放飞,享受成功的喜悦。
注意:在飞机试飞过程中,或多或少的存在一些问题。
常见问题:飞机头部撞地,在手送出飞机的时候,飞机的头部过重,导致飞机直接向地面飞行。修改时,可以选择头部减轻或尾部加重。
飞机机身反身飞行,这证明飞机的机翼不对称或尾翼的左右不对称。修改时可以调试飞机的机翼或尾翼,使之达到最好的飞行效果。
教师思索:学生放飞模型时,会不顾一切的奔跑,知道收回模型。通过比赛,锻炼了互帮互助的能力,激励他们不断完善自己的飞机。可以让飞机飞的更高、更远。从而说明学生能发现问题并分析问题、解决问题了。另外户外放飞也锻炼了学生的体能,对学生的灵敏度、耐力、臂力、腰部和腿部的力量的锻炼也都有好处。
五、活动总结
教师总结:小小的飞机模型,里面的学问有很多,它并不像我们想象的那么简单就能完成。这节课,我们不仅制作出了飞机的模型,还了解了飞机的构造及飞机原理。制造真正的飞机,还有很多知识需要我们去学习。航天梦想从这里起飞,希望同学们课下继续探索,也希望我们的同学有一天能为祖国的航天事业做出贡献!
六、活动评价:
对整个制作过程的评价
对学生态度的评价
对放飞效果的评价
学生自评:
利用下图评价量表对活动进行全程、多元化评价。评价的重点在于对活动过程的评价,包括参与学生的主动性、积极性、创造性等,这种评价能够较客观的反映每个学生在活动过程中的表现,促使每个学生在评价中反思。
小组名称完成时间完成质量飞行时间问题解决合作程度12
活动总评:
通过本次活动可以让学生根据飞机的飞行原理,再去制作其他式样、材料的飞机模型。再次让学生自发的组成小组,制作更有趣的、新颖的模型。这次活动培养了学生的团队精神、动手能力和安全意识,能让学生充分享受到实践过程中成功的艰辛与快乐。对综合实践活动产生浓厚的兴趣,在活动中能及时发现问题、分析问题、解决问题。通过活动,也为学生将来的职业选择提供了指导。本次活动开展后,很多学生在课外制作出一些更好的模型。
航模知识作文 航模入门基础知识文案:
今天,学习举行了一年一度的航模比赛,原来报名的时候,我报的是气垫船比赛,今天,我就拿着我的气垫船来比赛。
一开始,是别人来比赛,我看了一下,他们先把气垫船下面的东西弄鼓起来,然后轻轻地吧气垫船放到地上,最后用手轻轻一推,气垫船就跑起来了。
突然有人叫:“三·一班,来比赛。”是谁呀,我想。于是我抬头一看,哦,是老师呀。我赶忙走过去对她说:“来了。”“来,把电池安好,开始比赛。”
这时,我的心砰砰直跳,生怕气垫船不听话,跑不好。可是没办法,谁让我参加呢?于是,我深吸了一口气,把气垫船打开,只听:“开始”,我就轻轻地吧气垫船一推,不一会,气垫船就到了终点,我高兴极了,把气垫船拿在手上,又蹦又跳。“哇,3秒6”,有个同学在我耳旁吃惊地说。这下,我更高兴了,恨不得现在就颁奖。
航模比赛太好玩了,下次我还要参加。
结语:《航模知识》怎么写呢?其实习作不仅仅是引导学生利用身边的素材学习写作知识的过程,同时更是是引导学生关注生活、关心自然的一种手段。今天小编给大家整理了《航模知识》供大家参考,我们一起来看看《航模知识》作文应该怎么写吧!