当前位置: > 首页 > 高中作文 > 高考作文 > 正文

与圆有关的计算作文 与圆有关的计算知识点文案

2023-03-22 高考作文 类别:叙事 3000字

下面是文案网小编分享的与圆有关的计算作文 与圆有关的计算知识点文案,以供大家学习参考。

与圆有关的计算作文  与圆有关的计算知识点文案

与圆有关的计算作文 与圆有关的计算知识点文案:

板块一与圆有关的面积和长度计算
设的半径为,圆心角所对弧长为,
弧长公式:
扇形面积公式:
圆柱体表面积公式:
圆锥体表面积公式:(为母线)
常见组合图形的周长、面积的几种常见方法:
①公式法;②割补法;③拼凑法;④等积变换法
常考点:A、计算弧长
B、计算扇形面积
C、阴影部分面积(转化、割补法)
D、
E、计算圆锥的表面积、侧面积
F、计算最值面积(与二次函数最值结合、注意范围)
G、最短路径问题
【例1】如图,已知的半径,,则所对的弧的长为()
A.B.C.D.
【巩固】如图,边长为1的菱形绕点旋转,当两点恰好落在扇形的弧上时,弧的长度等于()
A.B.C.D.
【巩固】已知圆上一段弧长为6,它所对的圆心角为120°,则该圆的半径为___________.
【例2】已知正六边形的边长为,分别以它的三个不相邻的顶点为圆心,长为半径画弧(如图),则所得到的三条弧的长度之和为(结果保留).
【例3】矩形ABCD的边,现将矩形放在直线上且沿着向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A所经过的路线长是_________.
【例4】如图,已知半圆的直径厘米,点是这个半圆的三等分点,求弦和围成的阴影部分面积.(结果用表示)
【巩固】将绕点逆时针旋转到使在同一直线上,若,,则图中阴影部分面积为cm2.
【巩固】芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标.则图标中阴影部分图形AFEGD的面积=__________.
【例10】如图,圆心角都是的扇形与扇形叠放在一起,连结.
(1)求证:;
(2)若图中阴影部分的面积是,,求的长.
【巩固】(1)如图1,圆心接中,,、为的半径,于点,于点
求证:阴影部分四边形的面积是的面积的.
(2)如图2,若保持角度不变,
求证:当绕着点旋转时,由两条半径和的两条边围成的图形(图中阴影部分)面积始终是的面积的.
【例11】(09河南)如图,在半径为,圆心角等于的扇形内部作一个正方形,使点在上,点在上,点在上,则阴影部分的面积为____________.
【巩固】如图,已知点均在已知圆上,,平分,,四边形的周长为.图中阴影部分的面积为___________.
【巩固】阅读下列材料,然后解答问题。
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆。圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形。
如图(十三),已知正四边形ABCD的外接圆⊙O,⊙O的面积为S,正四边形ABCD的面积为S,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H。设OE、OF、及正四边形ABCD的边围成的图形(图中阴影部分)的面积为S
(1)当OM经过点A时(如图①),则S、S、S之间的关系为:S=(用含S、S的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由。
(3)当∠MON旋转到任意位置时(如图③,)则(1)中的结论仍然成立吗?请说明理由.
【例12】如果矩形纸片的两条邻边分别为和,将其围成一个圆柱的侧面,求圆柱的底面半径.
【巩固】圆柱的侧面展开图是一个矩形,如右图所示,对角线,,求圆柱的底面积.
【巩固】如图,△ABC是直角边长为a的等腰直角三角形,直角边AB是半圆O1的直径,半圆
O2过C点且与半圆O1相切,则图中阴影部分的面积是()
A.B.
C.D.
【例13】如图已知扇形的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为()
A.B.C.D.
【巩固】某个圆锥的侧面展开图形是一个半径为,圆心角为的扇形,则这个圆锥的底面半径为______________.
【巩固】如果圆锥的底面半径是,母线长是,那么这个圆锥侧面展开图圆心角的度数是__________.
【例14】圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().
A.B.C.D.
【巩固】若一个圆锥的底面积是侧面积的,则该圆锥侧面展开图的圆心角度数是_____度.
【例15】一个圆锥的侧面展开图是一个半圆,则此圆锥母线长与底面半径之比为__________.
【巩固】小华为参加毕业晚会演出,准备制作一顶圆锥形纸帽,纸帽的底面半径为,母线长为,制作这个纸帽需要纸板的面积至少为.(结果保留)
【例16】如图,小明从半径为5的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为()
A.3B.4C.D.
【例17】圆锥的母线长是,底面半径长是,是底面圆周上一点,则从点出发绕侧面一周,再回到点的最短路线长是____________.
【例18】已知为圆锥的顶点,为圆锥底面上一点,点在上.一只蜗牛从点出发,绕圆锥侧面爬行,回到点时所爬过的最短路线的痕迹如右图所示.若沿将圆锥侧面剪开并展开,所得侧面展开图是()
【巩固】如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为10cm.母线长为10cm.在母线上的点处有一块爆米花残渣,且cm,一只蚂蚁从杯口的点处沿圆锥表面爬行到点.则此蚂蚁爬行的最短距离为cm
【例19】已知在中,,把绕直线旋转一周得到一个圆锥,其表面积为,把绕直线旋转一周得到另一个圆锥,其表面积为,则:等于_________
【巩固】在手工课上甲、乙两名同学合作,将半径为1米,圆心角为90°的扇形薄铁片围成一个圆锥筒,在计算圆锥的容积时(接缝忽略不计),甲认为圆锥的高就等于扇形的圆心到弦的距离(如图),乙说这样计算不正确,你同意谁的说法?把正确的计算过程写出来.
【巩固】半径为的弧长等于半径为的圆周长,则这条弧所对的圆心角的度数是______________.
【巩固】若一扇形的弧长为,圆心角为,则扇形的面积为_____________.
【例20】一个扇形的半径为,圆心角为,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为__________.
【例21】如图,在中,,若以为直径的圆交于点,则阴影部分的面积是______________.
【例22】设矩形的长与宽的和为,以为轴心旋转一周得到一个几何体,则此几何体的侧面积有()
A.最小值B.最大值C.最大值D.最小值
【例23】如图,的半径弦点为弦上一动点,则点到圆心的最短距离是cm.
【巩固】如图,⊙O的半径OA=10cm,P为AB上一动点,则点P到圆心O的最短距离为___________cm。
【巩固】15.(2011四川广安,19,3分)如图3所示,若⊙O的半径为13cm,点是弦上一动点,且到圆心的最短距离为5cm,则弦的长为________cm
板块二正多边形与圆
正多边形的定义:各角相等,各边相等的多边形叫做正多边形.
正多边形的相关概念:
⑴正多边形的中心角;⑵正多边形的中心;⑶正多边形的半径;⑷正多边形的边心距
正多边形的性质:
⑴正边形的半径和边心距把正边形分成个全等的直角三角形;
⑵正多边形都是轴对称图形,正边形共有条通过正边形中心的对称轴;
⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.
正多边形的有关计算
⑴正边形的每个内角都等于;
⑵正边形的每一个外角与中心角相等,等于;
⑶设正边形的边长为,半径为,边心距为,周长为,面积为,

【例23】若正三角形、正方形、正六边形和圆的周长都相等,那么____________的面积最大;若它们的面积都相等,那么_____________的周长最大.
【巩固】在半径为的圆中有一内接多边形,若它的各边长均大于且小于,则这个多边形的边数必为___________.
【例24】下面给出六个命题:①各角相等的圆内接多边形是正多边形;②各边相等的圆内接多边形是正多边形;③正多边形是中心对称图形;④各角均为的六边形是正六边形;⑤边数相同的正边形的面积之比等于它们边长的平方比;⑥各边相等的圆外切多边形是正多边形.其中,错误的命题是_____________.
【例25】如图,是的内接正方形,是半圆的内接正方形,那么正方形与正方形的面积之比为____________.
【巩固】一个圆内接正六边形的边长为,那么这个正六边形的边心距为_________.
【例26】已知圆内接正六边形面积为,求该圆外切正方形边长.
【例27】已知圆内接正方形的面积为,求该圆的外切正三角形的外接圆的外切正六边形的面积.
【例28】如图,有一个圆和两个正六边形.的个顶点都在圆周上,的条边都和圆相切(我们称分别为圆的内接正六边形和外切正六边形).
⑴设的边长分别为,圆的半径为,求及的值;
⑵求正六边形的面积比的值.
【例29】(1)已知:如图1,是⊙的内接正三角形,点为弧BC上一动点,求证:
(2)如图2,四边形是⊙的内接正方形,点为弧BC上一动点,求证:
(3)如图3,六边形是⊙的内接正六边形,点为弧BC上一动点,请探究三者之间有何数量关系,并给予证明.
1.如图,有一长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上的顶点A的位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A2C与桌面成30°角,则点A翻滚到A2位置时,共走过的路径长为()
A.10cmB.35cm
C.45cmD.25cm
2.如图,在中,,,点为中点,将绕点按逆时针方向旋转得到,则点在旋转过程中所经过的路程为.(结果保留)
3.一个扇形所在圆的半径为3cm,扇形的圆心角为120°,则扇形的面积是cm2.
4.如图7,在中,分别以为直径画半圆,则图中阴影部分的面积为.(结果保留)
5.如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积于。
6.正边形内接于半径为的圆,这个边形的面积为,则等于____________.
7.的内接多边形周长为,的外切多边形周长为,则下列各数中与此圆的周长最接近的是()
A.B.C.D.
8.如图,已知:边长为1的圆内接正方形中,为边的中点,直线交圆于点.
⑴求弦的长.
⑵若是线段上一动点,当长为何值时,三角形与以为顶点的三角形相似.

与圆有关的计算作文 与圆有关的计算知识点文案:

一、知识回顾
圆的周长:C=2πr或C=πd、圆的面积:S=πr2
圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径)
三、知识要点
一、圆的概念
集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内点在圆内;
2、点在圆上点在圆上;
3、点在圆外点在圆外;
三、直线与圆的位置关系
1、直线与圆相离无交点;
2、直线与圆相切有一个交点;
3、直线与圆相交有两个交点;
四、圆与圆的位置关系
外离(图1)无交点;
外切(图2)有一个交点;
相交(图3)有两个交点;
内切(图4)有一个交点;
内含(图5)无交点;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①是直径②③④弧弧⑤弧弧
中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙中,∵∥
∴弧弧
六、圆心角定理
顶点到圆心的角,叫圆心角。
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,
即:①;②;
③;④弧弧
七、圆周角定理
顶点在圆上,并且两边都与圆相交的角,叫圆周角。
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵和是弧所对的圆心角和圆周角

2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙中,∵、都是所对的圆周角

推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙中,∵是直径或∵
∴∴是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△中,∵
∴△是直角三角形或
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙中,
∵四边形是内接四边形

九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵且过半径外端
∴是⊙的切线
(2)性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵、是的两条切线

平分
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙中,∵弦、相交于点,

(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙中,∵直径,

(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙中,∵是切线,是割线

(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙中,∵、是割线

十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:垂直平分。
即∵⊙、⊙相交于、两点∴垂直平
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:中,;
(2)外公切线长:是半径之差;内公切线长:是半径之和。
十四、圆内正多边形的计算
(1)正三角形
在⊙中△是正三角形,有关计算在中进行:;
(2)正四边形
同理,四边形的有关计算在中进行,:
(3)正六边形
同理,六边形的有关计算在中进行,.
十五、扇形、圆柱和圆锥的相关计算公式
1、扇形:(1)弧长公式:;
(2)扇形面积公式:
:圆心角:扇形多对应的圆的半径:扇形弧长:扇形面积
2、圆柱:
(1)A圆柱侧面展开图
=
B圆柱的体积:
(2)A圆锥侧面展开图
=
B圆锥的体积:

与圆有关的计算作文 与圆有关的计算知识点文案:

初三圆的知识点总结
如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵CD过圆心∵CD⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1)∵∠AOB=∠COD∴AB=CD(2)∵AB=CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1)(2)(3)(4)几何表达式举例:(1)∵∠ACB=∠AOB∴……………(2)∵AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴AB是直径(4)∵CD=AD=BD∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ABCD是圆内接四边形∴∠CDE=∠ABC∠C+∠A=180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB(3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵PA、PB是切线∴PA=PB∵PO过圆心∴∠APO=∠BPO8.弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)几何表达式举例:(1)∵BD是切线,BC是弦∴∠CBD=∠CAB(2)∵ED,BC是切线∴∠CBA=∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.几何表达式举例:(1)∵PA·PB=PC·PD∴………(2)∵AB是直径∵PC⊥AB∴PC2=PA·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例:(1)∵PC是切线,PB是割线∴PC2=PA·PB(2)∵PB、PD是割线∴PA·PB=PC·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.(1)(2)几何表达式举例:(1)∵O1,O2是圆心∴O1O2垂直平分AB(2)∵⊙1、⊙2相切∴O1、A、O2三点一线12.正多边形的有关计算:(1)中心角n,半径RN,边心距rn,边长an,内角n,边数n;(2)有关计算在RtΔAOC中进行.公式举例:(1)n=;(2)
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高
三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦
切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)
公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正
多边形的中心角.
二定理:
1.不在一直线上的三个点确定一个圆.
2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.
三公式:
1.有关的计算:(1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.
(4)扇形面积S扇形=;(5)弓形面积S弓形=扇形面积SAOB±ΔAOB的面积.(如图)
2.圆柱与圆锥的侧面展开图:
(1)圆柱的侧面积:S圆柱侧=2πrh;(r:底面半径;h:圆柱高)
(2)圆锥的侧面积:S圆锥侧=.(L=2πr,R是圆锥母线长;r是底面半径)
四常识:
1.圆是轴对称和中心对称图形.
2.圆心角的度数等于它所对弧的度数.
3.三角形的外心两边中垂线的交点三角形的外接圆的圆心;
三角形的内心两内角平分线的交点三角形的内切圆的圆心.
4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)
直线与圆相交d<r;直线与圆相切d=r;直线与圆相离d>r.
5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)
两圆外离d>R+r;两圆外切d=R+r;两圆相交R-r<d<R+r;
两圆内切d=R-r;两圆内含d<R-r.
6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.
7.关于圆的常见辅助线:
已知弦构造弦心距.已知弦构造RtΔ.已知直径构造直角.已知切线连半径,出垂直.圆外角转化为圆周角.圆内角转化为圆周角.构造垂径定理.构造相似形.两圆内切,构造外公切线与垂直.两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直.两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB.两圆相交构造公共弦,连结圆心构造中垂线.PA、PB是切线,构造双垂图形和全等.相交弦出相似.一切一割出相似,并且构造弦切角.两割出相似,并且构造圆周角.双垂出相似,并且构造直角.规则图形折叠出一对全等,一对相似.圆的外切四边形对边和相等.若AD∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.RtΔABC的内切圆半径:r=.补全半圆.AB=.AB=.PC过圆心,PA是切线,构造双垂、RtΔ.O是圆心,等弧出平行和相似.作AN⊥BC,可证出:.

与圆有关的计算作文 与圆有关的计算知识点文案:

一、圆的相关概念
1、圆的定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
二、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
dr点P在⊙O内;
d=r点P在⊙O上;
dr点P在⊙O外。
三、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径
经过圆心的弦叫做直径。(如图中的CD)
(3)半圆、同圆、同心圆、等圆
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
同圆:圆心相同且半径相等的圆叫做同圆。
同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
等圆:能够互相重合的两个圆叫做等圆。
(4)弧、等弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
能够互相重合的弧叫做等弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
圆心角的度数与它所对的弧的度数相等。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径平分弦知二推三
平分弦所对的优弧
平分弦所对的劣弧
七、确定圆的条件
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
八、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等。
推论1:同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、圆内接四边形性质(四点共圆的判定条件)
1.圆内接四边形对角互补;
2.圆内接四边形的外角等于它的内对角。
九、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线与圆相切,这时直线叫做圆的切线,这个公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线与圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交dr;
直线l与⊙O相切d=r;
直线l与⊙O相离dr;
十、切线的判定和性质
1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理
圆的切线垂直于经过切点的半径。
十一、切线长定理
1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等。
圆心和圆外这一点的连线平分两条切线的夹角。
3、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。
即:∠BAC=∠ADC
十二、三角形的内切圆
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十三、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十四、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十五、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
十六、弧长及扇形面积
1、弧长公式
n°的圆心角所对的弧长的计算公式为
2、扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的底面半径。
十七、圆幂定理(拓展)
切割线定理:从圆外一点引圆的切线和割线,切线长是割线和这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
如图,PT为⊙O切线,PAB、PCD为⊙O割线,则
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
如图,AB、CD为⊙O的两条弦,相交于点E,则


结语:《与圆有关的计算》怎么写呢?其实习作不仅仅是引导学生利用身边的素材学习写作知识的过程,同时更是是引导学生关注生活、关心自然的一种手段。今天小编给大家整理了《与圆有关的计算》供大家参考,我们一起来看看《与圆有关的计算》作文应该怎么写吧!